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Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported
by working and/or explanations. In particular, solutions found from a graphic display calculator should be
supported by suitable working, for example, if graphs are used to find a solution, you should sketch these
as part of your answer. Where an answer is incorrect, some marks may be given for a correct method,
provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the boxes provided. Working may be continued below the lines if necessary.

1.  [Maximum mark: 6]

(@) (1) Find the sum of all integers, between 10 and 200, which are divisible by 7.
(i1)) Express the above sum using sigma notation. [4]

An arithmetic sequence has first term 1000 and common difference of —6. The sum of the
first n terms of this sequence is negative.

(b) Find the least value of . [2]
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[Maximum mark: 5]

The weights, in kg, of one-year-old bear cubs are modelled by a normal distribution with mean
4 and standard deviation o .

(a) Given that the upper quartile weight is 21.3kg and the lower quartile weight is 17.1kg,
calculate the value of x# and the value of o . [4]

A random sample of 100 of these bear cubs is selected.

(b) Find the expected number of bear cubs weighing more than 22 kg. [1]
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[Maximum mark: 5]

The graphs of y=x’¢* and y=1-2sinx for 2<x<7 intersect at points A and B.
The x-coordinates of A and B are x, and x;.

(a) Find the value of x, and the value of x;.

(b) Find the area enclosed between the two graphs for x, <x < x,.

[2]

[3]
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[Maximum mark: 6]

The following diagram shows two intersecting circles of radii 4 cm and 3 cm. The centre C of
the smaller circle lies on the circumference of the bigger circle. O is the centre of the bigger
circle and the two circles intersect at points A and B.

B
A
Find:
(a) BOC; 2]
(b) the area of the shaded region. [4]
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[Maximum mark: 6]

6
. 1
Find the coefficient of x™ in the expansion of (x —1)° (—+ 2xj .
x
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[Maximum mark: 7]

Six customers wait in a queue in a supermarket. A customer can choose to pay with cash or a
credit card. Assume that whether or not a customer pays with a credit card is independent of
any other customers’ methods of payment.

It is known that 60 % of customers choose to pay with a credit card.
(a) Find the probability that:
(1)  the first three customers pay with a credit card and the next three pay with cash;
(i1) exactly three of the six customers pay with a credit card. [4]

There are n customers waiting in another queue in the same supermarket. The probability that
at least one customer pays with cash is greater than 0.995.

(b) Find the minimum value of 7. [3]
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7.  [Maximum mark: 8]
The function f is defined as f(x)=-3+ ! > x#2.
x p—

(a) (1) Sketchthe graphof y = f(x),clearly indicating any asymptotes and axes intercepts.

(i1)) Write down the equations of any asymptotes and the coordinates of any
axes intercepts. [4]

(b) Find the inverse function /', stating its domain. [4]
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8.  [Maximum mark: 4]
The random variable X has a Poisson distribution with mean .
Given that P(X =2)+P(X =3)=P(X =)),

(a) find the value of x; [2]

(b) find the probability that X lies within one standard deviation of the mean. [2]
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[Maximum mark: 5]
Sand is being poured to form a cone of height #cm and base radius » cm. The height
remains equal to the base radius at all times. The height of the cone is increasing at a rate of

0.5cmmin .

Find the rate at which sand is being poured, in cm’ min ™', when the height is 4 cm.
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10. [Maximum mark: 8]
Consider the curve with equation (x2 +y° )2 =4xy°.

(a) Use implicit differentiation to find an expression for % [5]

(b) Find the equation of the normal to the curve at the point (1, 1). [3]

Turn over
16EP11




[ N

-12- M14/5/MATHL/HP2/ENG/TZ2/XX
Do NOT write solutions on this page.
SECTION B
Answer all questions in the answer booklet provided. Please start each question on a new page.
11.  [Maximum mark: 13]

The probability density function of a random variable X is defined as:

T
axcosx, OSxSE, where a eR.

S (x)=
0, elsewhere
(a) Show that a = — [5]
(b) Find P(X < gj . /2]
(c) Find:
(i) the mode of X;
(i) the median of X. [4]

(d) Find P(X<§|X<§j. /2]
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Do NOT write solutions on this page.

12.

L

[Maximum mark: 15]

Engineers need to lay pipes to connect two cities A and B that are separated by a river of width
450 metres as shown in the following diagram. They plan to lay the pipes under the river from
A to X and then under the ground from X to B. The cost of laying the pipes under the river is five
times the cost of laying the pipes under the ground.

Let EX=x.
+—1000m >
E x X Ground B
¢ ®
450m
River
®
A

Let k be the cost, in dollars per metre, of laying the pipes under the ground.

(a) Show that the total cost C, in dollars, of laying the pipes from A to B is given by

C =5k+/202500 + x> + (1000 — x) k . [2]

. . dC
b Find —.
(b) (i) Fin o

(11) Hence find the value of x for which the total cost is a minimum, justifying that this
value is a minimum. [7]

(¢) Find the minimum total cost in terms of k. [1]

The angle at which the pipes are joined is AXB=6.

(d) Find @ for the value of x calculated in (b). [2]

For safety reasons € must be at least 120°.
Given this new requirement,
(e) (i) find the new value of x which minimises the total cost;

(1) find the percentage increase in the minimum total cost. [3]
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Do NOT write solutions on this page.
13.  [Maximum mark: 20]
Consider z=r(cosf+isind), zeC.
(a) Use mathematical induction to prove that z" = r" (cosné +isinn@), neZ" . [7]

Given u=1++/3i and v=1-1,
(b) (1) express u and v in modulus-argument form;
(i) hence find u’v*. [4]

The complex numbers u and v are represented by point A and point B respectively on an
Argand diagram.

(c) Plot point A and point B on the Argand diagram. [1]

Point A is rotated through B} in the anticlockwise direction about the origin O to become

. , . . T . . o
point A’. Point B is rotated through B in the clockwise direction about O to become

point B’.
(d) Find the area of triangle OA'B'. /3]

Given that u and v are roots of the equation z* + bz’ +cz* +dz+e=0, where b, c,d,ecR,

(e) find the values of b, c,d and e. [5]
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Do NOT write solutions on this page.
14. [Maximum mark: 12]

Particle 4 moves such that its velocity v ms™, at time ¢ seconds, is given by

t
v(t)=——,t20.
@) 12+¢

(a) Sketch the graph of y=v(¢). Indicate clearly the local maximum and write down
its coordinates. [2]

t
4

(b)  Use the substitution u =¢* to find I
12+¢

dr. [4]

(c) Find the exact distance travelled by particle 4 between t=0 and #=6 seconds.
Give your answer in the form karctan(b), k,beR. [3]

Particle B moves such that its velocity v ms™ is related to its displacement s m, by the equation

v(s) = arcsin(«/g) .

(d) Find the acceleration of particle B when s =0.1m. [3]
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